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dimensional (LOD) equations, then applying a pair of symplectic Runge-Kutta methods
to discretize each resulting LOD equation, it leads to splitting multisymplectic integrators.
We say this kind of schemes to be LOD multisymplectic scheme (LOD-MS). The discrete
conservation laws, convergence, dispersive relation, dissipation and stability are investi-

g/gsh(;l:OG gated for the schemes. Theoretical analysis shows that the schemes are unconditionally

65M12 stable, non-dissipative, and of first order accuracy in time and second order accuracy in

65205 space. As a reduction, we also consider the application of LOD-MS to 2-D Maxwell’s equa-

70415 tions. Numerical experiments match the theoretical results well. They illustrate that LOD-
MS is not only efficient and simple in coding, but also has almost all the nature of multi-
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1. Introduction

It has been widely recognized that the symplectic structure-preserving numerical methods have the remarkable superi-
ority to conventional numerical methods when applied to Hamiltonian ODEs and PDEs [1-3], such as, long-term behavior,
symplectic structure-preserving, etc. At the end of last century, symplectic integrators have been generalized to multisym-
plectic ones [4,5]. The multisymplectic Hamiltonian partial differential equations (HPDEs) with m spatial dimensions read [5]

Mz + " Kizy, = V,S(2), (1.1)
k=1

where M and Ky, k=1,2,...,m, are skew-symmetric matrices and mean symplectic structures, and S(z) is a smooth func-
tion which is called the Hamiltonian function or the energy functional. It is well-known that along the solutions
Z(X1,X2,...,Xm, t) of an HPDE, it gives rise to the multisymplectic conservation law (MSCL)

o moy
§w+g@Kk_0’ (1.2)
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with the differential 2-forms w = dz A Mdz, k, =dz AK,dz, k=1,2,...,m, where dz fulfills the variational equation of mul-
tisymplectic system (1.1).

Furthermore, for the general multisymplectic system (1.1), there is a local energy conservation law which is in geometric
form

9 mog
5P@ + ; a—kuk(z) =0, (1.3)

provided that S(z) is independent of the variables x, t explicitly, where
I r 1 I
P(z) :S(z)—zk;z Kiz,,, Qi(z) :jz Kyz,, k=1,2,....m.

Numerical methods which preserve the multisymplectic geometric structure are desirable because of their inviting advan-
tages, for instance, the stability of long-term numerical simulation, the preservation of local conservation laws, and so on.
Many scientists are injecting themselves to the field, and rapid progress has been made during the last 10 years for various
HPDE:s (see [4-14] and references therein). The most important and popular class of multisymplectic methods, concatenat-
ing of symplectic Runge-Kutta (SRK) methods or symplectic partitioned Runge-Kutta (SPRK) methods, are completely im-
plicit, especially for nonseparable Hamiltonian system. It is straightforward to apply these methods to multi-dimensional
HPDEs theoretically. However, it is difficult in programming because of the huge scale of the algebraic equations and sub-
stantial computational cost. For example, for a 3-D problem, it is required to solve at least one 10° scale algebraic equation at
every time step provided that the considered spatial domain is divided into 100 x 100 x 100 cells. This is insolvable by a
personal computer (PC) because of the limitation of memory and the performance of CPU up to now.

The alternating direction implicit (ADI) method, the local one-dimensional (LOD) method and the fractional step (FS)
method are originally devised to solve multi-dimensional parabolic problems by Peaceman, Douglas and Rachford [18-
21]. The most magnetic and popular merits of these methods are economic in the use of memory and CPU time. For instance,
for the previous example, we only need to solve about thirty thousands 100 scale algebraic systems at very time step if we
adopt the LOD strategy. There is no more difficulties for the problem from the aspect of memory and CPU.

To get over the difficulties with respect to memory and computational cost of the conventional implicit multisymplectic
algorithms, we melt LOD idea into the multisymplectic algorithms for multi-dimensional HPDEs in the paper.

The outline of the paper is organized as follows: In Section 2, the conservation laws and the multisymplecticity are inves-
tigated for the 3-D Maxwell’s equations. In Section 3, we split the 3-D Maxwell’s equation into three LOD multisymplectic
Hamiltonian systems. In Section 4, the LOD multisymplectic discretization is successfully applied to the split Maxwell’s
equations, and an LOD multisymplectic scheme (LOD-MS) is established for the sub-Hamiltonian Maxwell’s equations. In
Section 5, we explore the stability, convergence, dissipation, dispersion relation as well for the just established scheme. In
Section 6, one-, two- and three-dimensional Maxwell’s equations are simulated by the novel LOD-MS. We conclude and re-
mark the paper in Section 7.

2. Maxwell’s equations and its conservation laws

Maxwell’s equations are the most foundational equations in electromagnetism and are widely applied to many applica-
tion fields. They are mathematical expressions of the natural laws correlative fields, such as Ampére’s law and Faraday’s law,
etc. Recently, in large scale and long-term computation, it is extremely crucial to propose efficient numerical methods to
simulate Maxwell’s equation with two or three spatial dimensions. Up to now, it is rather difficult numerically to simulate
them by conventional numerical methods in a PC owning to the restriction of memory and CPU. To clean the difficulties, the
ADI and the LOD numerical techniques are frequently adopted, which are often combined with finite difference time-domain
(FDTD) methods [22,31]. For example, Holland considered the ADI method combined with Yee’s scheme for two-dimensional
transverse electric waves in [23], however, it is difficult to extend to 3-D problems. Recently, some splitting FDTD methods
for two-dimensional Maxwell’s equations are proposed in [24-26]. As for the 3-D problems, in [28], Sha et al. proposed sym-
plectic-FDTD techniques, however, they are conditionally stable. Zheng et al. first proposed an unconditionally stable ADI-
FDTD scheme in [27], which analyzed the stability by Fourier method. In addition, Lee and Fornberg brought up some uncon-
ditionally stable time stepping methods [29,30], which include some techniques to enhance the temporal accuracy of the
schemes, such as extrapolation and deferred correction techniques, but none of them has considered the multisymplecticity
of Maxwell’s equations. In [16,17], Cai et al. and Su et al. considered multisymplectic schemes. However, they are all com-
pletely implicit, and are difficult in code for 3-D problems, and in their experimental work, they only performed 1-D or 2-D
problems. We consider the LOD-MS for the Maxwell’s equations in the paper, and overcome the pitfalls of the above numer-
ical techniques. It is very efficient in code, and unconditionally stable, non-dissipative, and of first order convergence in time
and second order in space. Furthermore, it is energy-preserving and multisymplectic.

For a linear homogeneous medium within linear isotropic material with the permittivity € and the permeability y, the
scattering of electromagnetic waves without the charges or the currents can be described by the 3-D Maxwell’s equations
in curl formulation
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JE 1
oH 1

where E = (E,,E,,E;) and H = (Hy,H,,H;) represent the electric field and the magnetic field, respectively. The domain
Q x [0,T] =[0,qa] x [0,b] x [0,c] x [0,T] under consideration is occupied by this medium and surrounded by perfect conduc-
tors. Therefore, the perfectly electric conducting boundary condition is imposed on the boundary, namely,

(E,0) x (i,0) =0, on a2 x (0,T], (2.3)

where 1i is the outward normal vector of the boundary.
The curl equations (2.1) and (2.2) can be written into the componentwise formula

[1
€
" E, 1

< z =
g |iaH
(

) E, % HX
o = . (2.4)
Hy 1 (2 - 4E:)
H
' i (xEz = %Ex)
LH, |

| H(5E—5E) |

Letz = (Hy,Hy,H;, E\,Ey, E,)", the componentwise formula (2.4) is naturally multisymplectic, and the corresponding matrices
are

0 0 0 :
00 -1 o
0; -5 0 ¢ ©
M = K, =
b ol ®
0, 00 -}
1
I i 0]
0 0 1 T 0 -1 0 1
0 00 0; 10 0 0,
1.0 0 0 0 0
Kz 00%*’@: 0 -+ op
0, 0 0 0 0; L0 0
I —u 0 0 i 0 0 o0

where 05 is the 3 x 3 zero matrix and I3 is the 3 x 3 identity matrix. The Hamiltonian function is S(z) = 0.
The MSCL of this multisymplectic HPDE (2.4) is

7] 0 (1 1
3 (dEx A dHy + dE, A dH,, + dE, A dH,) + % (E dH, AndH, + ﬁdEz A dEy>

0

Ty

(1 dH, A dH, + - dE, dEZ>
€ u 0z

+ 2 (%dHy/\de—l—%dEy/\dEx) =0. (25)

By (1.3), through a direct calculation, the corresponding local energy conservation law to the Maxwell’s equations (2.1) and
(2.2) written into the curl-divergence form is

a (1 1 1 1
8t< H-V x H+,uE VxE) (EV~(HXH[)+EV'(EXE[)>:O. (2.6)
Under the perfectly electric conducting boundary condition (2.3), it implies the total energy conservation law
/ 1H~V><H+1E~V><E dQ:/ H- 8—E—E oH dQ = Constant. (2.7
o \€ 2 Q ot ot

It is noted that for the first equality we have used the curl equations (2.1) and (2.2).
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Furthermore, the Maxwell’s equations (2.1) and (2.2) conserve the following invariants:

Energy I : /(e\E(x, t)|2 + p[H(x, t)*)dQ = Constant, (2.8)
[ [ |oExD MO
Energy 11 : . /Q ( ot o | dQ = Constant. (2.9)

The first invariant (2.8) is called Poynting theorem in electromagnetism and can be easily verified, and the second one is a
little more complex. For more details, see [24].
In the two-dimensional transverse magnetic (TM) polarization case, the electric field and magnetic field read
=(0,0,E,)", H= (HX,Hy,O)T. Therefore, the Maxwell’s equations (2.1) and (2.2) become

O _ 1 (OHy _ oHy

o e\ ox ay )’

oHy _ 1 0E; (2.10)
at w oo

OHy _ _ 1 0E

o~ p oy

3. Discretization of sub-Hamiltonian PDEs

For a Hamiltonian ODE, one of the most important methods to construct symplectic integrators is the vector field splitting
method [3]. For example, assume that the Hamiltonian function can be split into H(z) = Hy(z) + H2(2) + - - - + Hn(2), and the
Hamiltonian system

=JV,H(z) =]V (Hi(2) + H2(2) + - - - + Hn(2)), (3.1)
can be split into m subsystems

Z¢ :JVZH](Z)* j:lsza""mv (32)

where | = {E)I (I)} is the standard symplectic matrix.

To numerically solve the Hamiltonian system (3.1), we firstly solve subsystems (3.2) which are easier than directly solv-
ing system (3.1), one after another by symplectic integrators. The numerical solution of one subsystem is employed as the
initial values of the next one (see e.g. [2,3] and references therein). However, for the multisymplectic Hamiltonian system
(1.1), to our knowledge, there is no study on its splitting methods. We explore its splitting multisymplectic integrators in
the section. We firstly localize the original multisymplectic HPDE to several one-dimensional ones, then consider the mul-
tisymplectic discretization for the LOD HPDEs.

For the general m-dimensional multisymplectic Hamiltonian system (1.1), let us consider the LOD multisymplectic Ham-
iltonian system

%Mzt +Kizy, = VoSi(z), k=1,2,...,m, (3.3)

where S, (z) can be any splitting of S(z), but it ought to satisfy > ,Sk(z) = S(z).
Certainly, the LOD multisymplectic Hamiltonian systems satisfy the LOD MSCLs

190 7] .
matw-i-a]lc,fo j=12,....m (3.4)

It can be verified that the sum of the above m conservation laws is just the MSCL (1.2).
For example, the multisymplectic Hamiltonian system (2.4) can be split into the following three LOD subsystems

1.9 9
Mz +Kig 2=0, k=123, (3.5)

where M, K;, K,, K5 are the same as those presented previously. The corresponding LOD MSCLs for (3.5) read

3 O (A A dHy -+ dEy A dH + dE, A dH,) + 0 (l dH, A dH, + %dEz A a5y> o0, (3.6)
10 0 1

30 (dEx A dHy + dE, A dH, + dE; A dH,) + _y ( dH, A dH, + ,udE" A dEZ> =0, (3.7)
10 P

30 (dEx AdHy + dE, A dH, + dE; A dH,) + 8— < dH, AdH, + MdEy A dEx> =0. (3.8)
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In fact, the multisymplectic subsystems (3.5) can be cut down

0 0 -1 07[H,] [0 —¢ 0 07rH,

110 0 0 -1||H, ¢ 0 0 0||H,

210 0 oflg|T]o 0o o -1ffg]| =0 (39)
01 0 oJlE], [0 0 1 o]lE],
0 0 -1 07[Hs1 [0 1 0 07rH,]

110 0 0 -1||H, -10 0 0||H,

210 0 of|le|l [0 o o t||gl~? (3.10)
01 0 oJlE], [0 0 -1 0]lE],
0 0 -1 07[H [0 =2 0 07rH,

110 0 0 -1||H, ¢ 0 0 0]|H,

2110 0 oflg| "o o 0 —2||g| =" 311)
01 0 oJlE], |o o L o]lE],

Thus, the MSCLs (3.6)-(3.8) are reduced to

2 O (dE, A dH, + dE, A dH) + i(ldeAdHy-i—l]ldEz/\dEy) —o, (3.12)

10 0 1

3 o (B A dH - dE; N dHy) + o Ede/\dHZ+ﬁdEx/\dEz =0, (3.13)

10 9 (1 1

3 ot (4B A dH dEy ndHy) + 5 ( dHy A dHy - dE A dEy ) 0. (3.14)

The multisymplectic subsystems (3.9)-(3.11) can be uniformly written in the form

Mz +Kz,, =0, k=1,2,3, (3.15)
where
00 -1 0 0 +; 0 0
oo 0 -1| - |¥f 0 0 O
M = s K= ‘ 1>
10 0 O 0 0 0 =4
01 0 O 0 0 :Fﬁ 0
H, H, H,
_ H, _ H, i H,
Z= or Z= or z=
E, Ey E,
E, E, E,
For the two-dimensional Maxwell’s equation (2.10), it can be split into
10E _ 1 0Hy 1 f’dﬁ = — 10
2 0t € Ox ot € gy’
{Wy_laEz and {M_lﬁ_fz (3.16)
o T oox> o~ uoy”

In what follows, we investigate the directional multisymplectic numerical methods for the multisymplectic HPDEs (1.1)
and (3.3). In other words, numerical integrator preserves LOD multisymplectic conservation laws which is consisted of sym-
plectic structures under considering spatial direction and temporal direction. For simplicity, we first discuss the multisym-
plectic numerical method for (3.3).

Let hy, hy and h, be the mesh sizes along x, y and z directions, respectively, and t the time step length. The spatial-tem-
poral domain [x;, Xg] x [y;,¥g] x [21, 28] x [0, T] is partitioned by parallel lines, x; = X, +ihy, y; =y, +jh,, zx =z, + kh;, t" = nz,
fori=0,1,....,1; j=0,1,2,....J; k=0,1,2,...,K and n=0,1,...,N. The grid point function ;, is the approximation of
W (x,y,2,t) at nodes (x;,y;,z, t"). The general difference operators are employed:

+1
W?J k lpl_) k N lle_} k lp?j.k
twi\;k_ ) ()Xl/ll}k_ h )
X
S ‘//11+1 k lpi.j,k 5 no_ W?j.kﬂ - ‘p?j.k
J’Wuk - h ’ Zl/’i.j.k - h .
Yy z

Under the cuboid spatial domain and the uniform mesh division, the difference operators are commutable, namely,
05041 = Opduibij i, where oo and  can be taken either of the directions x, y, z and .
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Applying an s-stage and an r-stage Runge-Kutta methods to the LOD Hamiltonian system (3.3) in the t-direction and x,
direction, respectively, we have

S
=241 amdZ!, m=12,...5s,

n=1
S
Zl =241y bnoZ,
m=1
;
Zr =z e h 00,20, i=1,2,..,, (3.17)
j=1

ro_
20 =z + h, S b0, Zl, a=xY,z,

i=1

MZ™ + K9,Z" = V,S(Z™),

here we made use of the notations: Z' ~ z(Cohy,CmT), 25 ~ Z(Cphy, 0), 2} ~ 2(Cohy, T), 2 =~ 2(0,CuT), ZI' = z(hy, CuT),
NZy = 0zZ(Cpha, CmT), 022y ~ 8yZ(Cohy, CmT), and let cm = Y51 amn, Cp = D g1 lpg-

Lemma 1 (Reich [4]). Let the multisymplectic formulation (3.3) be discretized in the t-direction and x,-direction as (3.17) .
Moreover, the Runge-Kutta coefficients {amn}{bm} and {apq}{bp} satisfy the symplectic conditions
buby — bnmGmn — bp@yn =0, m, n=1,2,...,s, (3.18)
byby — bylipg — byagy =0, p, q=1,2,...,7,
there results in a multisymplectic integrator.

For r = s = 1, the multisymplectic Runge-Kutta method (3.17) can be written as
1 n+l _ on n+l nl

i) % Zili — % n+j
M :vzsk(zi%), k=1,2,....m, (3.20)

n 1 (s M2) — 1 (n+1 n+1 n+1 i g i ;
where ZH; = 5( it T Z 2) =1 (ZH% +z?+% 3 (@ + 20 + 2, + 27"). This scheme is just the frequently used Preissman

scheme or central box scheme (also see [8,9,12]).

4. LOD multisymplectic method for Maxwell’s equation

The Maxwell’s equations (2.1) and (2.2) are 3-D HPDEs. In numerical computation, an explicit numerical method (e.g.
Yee-method) suffers from a strict CFL condition, and we are often required implicit methods to simulate them which are
usually unconditionally stable. However, for conventional implicit methods, they are often impracticable because of the
limitation of memory and CPU. It is necessary to adopt the LOD or the ADI techniques to numerically simulate them
[19-21,24,27,29,32]. To the specific structure of Maxwell’s equations, it is a very suitable application LOD technique to them.

To illustrate the terrible computational cost of the non-LOD central box scheme for 3-D Maxwell’s equations (2.1) and
(2.2), we firstly apply central box scheme to them and have

1
n < i+l n+
5fEx ¢ bJ'HZ 12 1 — 6. H Y; 2 1 = 0"
,'A%_H%;H% € itikiy i+] itk
1
n 1 N n+3 ﬂ+2 _
5ny,1.1 1 € 0, X111 1 707
SoTA k<7 H—J»?.k I_]+ k+2
1
nil n+
SE) -1 2 2
t Hi‘”%”“% € X y:.j+%.k+1 1+ ]k+1 (4 1)
. .
¢ ity ‘ H+
SH; —L1{5,E," 2 =0
t X,'A%_jur%_prl H z yi+%.j—%k y Zx+]_1 1k ’
1
n 1 TH»i n+2
5tHyv 11,1 M 5’<EZ- 1p.1 1
ity k’f 1]+7.k+7 + —j 4
1
- n+l «
ocH —L{5,E 2 —6E, 2 =0
Zigpded R\ YL VijrLierl ’
i+ kg 29 Zk+y

fori=1,2,...,I; j=1,2,...,]; k=1,2,...,K; n=0,1,2,... This scheme is exactly multisymplectic and convergent to the
curl equations (2.1) and (2.2) with second order in both space and time directions. Nevertheless, to solve the difference equa-
tions, we need to resolve a linear algebraic equations with 6 x I x J x K scale. The bandwidth of its coefficient matrix is very
wide. The computational cost is so intensive that we can say it is unresolvable in the computational sense of PC. As a com-
promise, we resort to the LOD multisymplectic integrator.

Now, we apply the central box scheme (3.20) to discretize the sub-Hamiltonian systems (3.9)-(3.11), respectively, and get
the following directional multisymplectic scheme:
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1.1 Hn+1
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11 (gt
212 ljk+2
11 (it
2 1’/2( Uk—
11
21/2 uk+2
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2 T/2< 1.1.k+7
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Hylj‘k+%> * fthy (Exi,j.k+l

where U* is an intermediate value between U" and U™,
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1
:+—1k) + ehy (

1 ndx
e > 0

Zit1jk ij.k
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4265

(4.2)

(4.3)

(4.4)

It is obviously that the numerical integrators (4.2)—(4.4) satisfy the discrete analogue of LOD MSCL (3.12)—(3.14), that is,

w* —on n4ds e
XLl X Lidid Xl Xl kel
2ty 2"y 24 Vi) Ty 2_0
T hy ’
nt1x n+ n+ls s
yi+%j+%.k+% yi+%.j+%./z+% yi+%.j+1.k+% yr—lj k—— _ O
T hy, '
CO"H —w n+2 _ n+l
Ziyl J+1 k+ Ziljd gl Ziyl 14—k+1 Ziljdk
2¢ 272772 2¢ 2v 2
n -0,
T h,
where
% 1 ok ¥ ok *
w; =5 (dE, | A dHy +dE, A dH, ,
i+%j+%.k+% 2 x+71+1 k+— % % % i—%ﬁ%,k% i+%4+%.k+%
1
n n n n
) =~ (dE NdH + dE; AdH, ,
ivdjrd ks Viidjdpd yi+l.j+l.k+l irdjidieid irdjrd kd
2972772 2972772 2Y72 2V72 2772
1 1
KyZ = —dH”*z NAHEE 4= dE”*z NdE) %
f»f+%-k+% € x]+1 k+ 1]+] k+ l,t 1]+1 k+ yi.j+%.k—% :
1
* * * n+1 n+1
mele - — ~(dE AdH +dE AdH. ,
Yididd 2 iditkkid Xiidjidkid Zidisdied Zisdirhked
2972772 2 2972772 2
Nk 1 n n * "
) == dE, N dH, +dE, A dH, ,
i+% _y+% k+% 2 i+%.1+1i.k+% 1+1i.j+%.k+% i+% j+%.k+% i+%.j+%.k—%
nge 1 dH n+% AdH n+% 1 dEnJr% A dEnJr%
yx+;r<+l_g " " +- " Z 10,10
Zikiy x+21 +2 1+21 +2 Uu l+2j +2 i3k
1
n+1 n+1 n+1 n+1
= L (gE " +dE  AdH 7
i+1.1+l.k+l 2 i+lj+l.k+l i+l.j+l.k+1 1 +1 k+] y|'+lj+l.k+l
2972772 2972772 2772 2772772
1
ok % vk *
; == (dE, AdH, +dE, AdH,
i+%j+%.k+% 2 |+21+— k+— i+%j+%.k+% i+%J+%.k+% I+2J+— k+—
1 1 1
n+y N5 N+ n+d n+d
I gl H'Y g dE N
54k € 1+lj+—k i+%.j+%,k ﬂ 1+—j+1 k 1+—1+ &

Consequently, schemes (4.2)-(4.4) are LOD-MS.

(4.5)

(4.6)

(4.7)
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Adding the above directional discrete multisymplectic conservation law altogether, it yields

1 n n4ls s 4k n+ts n+} n+l
a)l+ ]+1 k+2 wi+%j+;—,’<+% Xi+1.j+%.k—% Xi.]—% k+% y1+%.j+l.k+% yi+%.j k+% Zi+%.1+%.k+l Zi+%.j+%.k
+ + + -0, (4.8)
T s B, h;
where " , ., , = dE; AdHY +dE} AdH! +dE; AdH, . This is a discrete analogue of the
i+ H’ k+ i—%.j#% IH—; i+%.j—%.k+% yi+%j+%.k+% yi+%.j+%.k+% i+%.j—%.k+% 1+ j+l k+‘
MSCL (2.5).

The local MSCL (4.8) is naturally global if the solutions are periodic, in other words, the global symplectic conservation
law

Z it} J+‘ k+3 Z wl+2J+- k3 (4.9)
ij.k ijk

is held. This means that LOD-MS is at least symplectic structure-preserving, although it may be not exactly multisymplectic
preserving in some situation.
The schemes (4.2)-(4.4) can be rearranged into,

% <E;,+%.j.k EJ’Hle) +ﬁ [(H;M-f-k N Hgffk) + <HZ””" Z”k>] (4.10)
T (H;i+%1.k - nw%f.k) + Zl}hx [(E;u.j.k N E;w’k> + (E;”‘J-k -5 "f”‘)] =0

T <E;t'+ljk 2,+1.j.k> B Zelhx [(H;m.j.k ;uk> + (H;"“Jk ;’“)] =0 (4.11)
% (H*P%J.k B ;,+%J.k> B zl;l’lx |:(EZ+1JJ< - E;u’k) * (E2f+‘-f"‘ B Eg’jk)] =0

% (E:g.ﬁ%.k nu%»k) - Zg—hy [(Hg;:l»k B g’j:) + (H;i‘j+1 k ;”k)] =0 (4.12)
e ) - (BB + (B B =0

T (Egj%k B E;ﬁ%*) * ZgTy KH;‘J+1.k N Hj‘uk) + (H"ZUH* a Hz"-f-kﬂ e (4.13)
(8, ) (- 22) (6, -5,)) 0 |

% (E:::% B *uk+%> + 251112 [(H;:1+1 - ;:D + (H*’J-’H B H;"J"‘)] =0 (4.14)
: (H;t:% - H;’x.j.k%) + lehz [(E;'::H N E:::) * (E;UM B Eiuk)] =0 |

! (ESJ L{ y) st [ (Ppk = Hit) + (Hi, — i, )| =0 (4.15)
% <H::;+% - H;r‘.j.w%) B Zl}hz [(E;I:H N E;I» + (E;J"“ B E;’j'k>] =0 |

From (4.10)-(4.15), we can see that the LOD-MS can be coded easily and memory economic. In every marching time step,
we only need to solve some one-dimensional scale linear algebraic systems. Moreover, there is no extra memory wanted to
save the intermediate variables. In the practical performance of the scheme, it need not solve components coupled equations.
Indeed, from the above three steps, we can use the second equation to eliminate the magnetic component on the new time
level at the first equation, and get a tridiagonal system with respect to electric component, then substitute the new electric
component into the second equation, and a two-diagonal system with respect to magnetic component is obtained. For exam-
ple, for Eq. (4.10), we substitute the expression of H* ~ into the first equation, then turn against solving H; . thatis in the
following form: b "

(E)*/. 1jk + ZE* +E;x+11k) ex'ux( Vi1jk 2E;i.j.k +E;x+1j.k)

(E;’l, 1k +2E;x.'.k +E;i+].j./z> + 6"'ux< Vi1jk ZE;i.j.k +E;i+].j.k> 26"( Ziijk H;ifl.j.k>7 (4.16)
H;I}zjk :H;lx}]jk z’u"< Vistjk _Eyuk) Z'ux( Vit jk _E;ij.k)"

Unfortunately, for periodic problems, these formulations are only suitable for odd I, J and K since the coefficient matrices
corresponding to the second difference equations are singular for even ones, that is
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1 . B {2, n isodd,
1] o, niseven.
1 11,

For the two-dimensional Maxwell’s equation (2.10), the conventional multisymplectic central box scheme is

1 1
< 1 n+y o opntd
()[Ezul' 1€ <5xHyi+lJ ()yHXxj+l ’
i+l % 1
1
n o 1 n+5
oHy =~k (4.17)
i1yl 1
1
n 1 Nty
oHy =40k 7,
1+7.j—7 Wty

and the LOD-MS reads

e, B, ) = (o, oty ).
2 2 2 2 (4 ‘18)
+1 N 1 NI g
1 (H;Hl_j - H;Flj> i (ong;_j + aXEZHlJ>,
2 2 2 2
e -, ) =g (am raHrl).
ijty ijty i3 i3 (4 19)
R R LA |
ij+y ij+y o s

Even if in this case, the conventional multisymplectic box scheme (4.17) is hard in computing, and the LOD-MS (4.18) and
(4.19) can be performed easily. Moreover, it is amenable to parallel processing.

5. Stability, dissipation, dispersion and convergence analysis

In the previous section, we have observed that the new LOD-MS is economic and simple in coding. Furthermore, it is not
only totally symplectic structure-preserving, but also LOD multisymplectic structure-preserving. In this section, we will find
that the scheme is unconditionally stable and non-dissipative. The convergence, dispersive relation as well will be analyzed.

Let € = -, € =gy € =g My =15 My =75 M, =g To the above goals, we rewrite the LOD-MS (4.10)-(4.15) in a

uniformly formulate
A €A "
:{ 1 ﬂFszHE } (5.1)

{ A L&A } E™!
:I:IU,SAQ Aq Hn+1 :FIU,SAZ Aq H"

wheres =xoryorz [E', H"]" is a vector whose components consist of a component of electric field E and a component of
magnetic field H, and

11 -1 1

Since the LOD-MS (4.10)-(4.15) are all locally one-dimensional schemes, we first study the stability of the one-dimen-
sional problems. We take scheme (4.10) for instance. Now let

E! E
Yijk | _ 0 | p—i* (kihy+kyjhy +kzkhz)
= e yihy 52
|:H;i.j.k :| |:H0 :| p 7 ( )

where i* = v/—T, the nonzero vector [Ey, Hp|]" is the eigenvector of the scheme (4.10), and p is the stability factor depending
on time whose modulus will determine the stability and dissipation of the scheme under discussion, and k = (ky, k. k;) is the
wave number. Substituting the plane wave solution (5.2) into the scheme (4.10), it leads to

[ p-1 " (sinby)(p + 1)

Eo
wrsmips ) et ) O >3)
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where 0, = 1k.h,. The coefficient determinant of the homogeneous algebraic system (5.3) is zero in that the eigenvector
[Eo, Ho]" is nonzero, that is,
1 — f,6,sin 0,

2
-2
p 1+ p1 € sin’ 0,

1=0. (5.4)

It is easy to verify that the magnitude of the characteristic roots is

1+ 6 sin? 0, B

= 1.
1+ p € sin? 0,

14

Therefore, the scheme (4.10) is unconditionally stable and non-dissipative. Similarly, we can get the same characteristic
roots for the schemes (4.11)-(4.15). It can be concluded that all of the schemes (4.10)-(4.15) are LOD and non-dissipative
through each sub-step, and therefore assure the whole unconditionally stable and non-dissipative. Then this leads to the fol-
lowing result.

Theorem 1. The LOD-MS (4.10)-(4.15) is unconditionally stable regardless of the time step t. The Courant condition is then
removed. This also shows that the LOD-MS is non-dissipative.

To discuss the dispersion of the LOD-MS (4.2)-(4.4), we first analyze the dispersion of their continuous problems (3.9)-
(3.11). Because their dispersion is similar, we only discuss it for subproblem (3.9). Substituting a plane wave solution

EHX _ ei‘ (kxx+kyy+kzz—wt)Eon
where EH,, is a nonzero eigenvector, and w is the frequency, into (3.9), it yields
0 -1k, -l 0
Ik, 0 0 lo
jo 0 0-1k,
0 lo -1k 0

EHyo = O, (5.5)

The coefficient determinant must be zero since the eigenvector is nonzero. Thus, we have

1, 22\
—w*—vk; )] =0, (5-6)
4
where v = # ie,
1, 1,
In a similar way, we can find that the other two dispersive relations for subproblems (3.10) and (3.11), respectively
1, 1, 1, 1,5,
7 euky =0, 2® e,ukz =0. (5.8)

Since the temporal step size for LOD-MS (4.10)-(4.15) is 1 7, let the stability factor p = et Then, substituting p into the
characteristic equation (5.4) results in

(1+ J 6 sin® 0,)e" " — 2(1 — € sin’ 6,)e¥ 7 + (1 4 p1, €, sin” ;) = 0. (5.9)
Inserting the expressions of yu,, € and 0y into (5.9), it brings up
in2 1 21
sin® 1 keh tan® ;T
@ J xzle 10T 52 (5.10)
Gkh)® 4 (Gor)

It is remarked that the dispersive relation (5.10) converges to the theoretical dispersion relation (5.7) provided that t and h,
both tend to zeros. Similarly, we can see that the numerical dispersive relations for (4.12) and (4.14) are

5,280 Tkyhy 1tan’ jot 5o sin? 1kh, 1tan’ jor
k= P =g g g @ PR 2= A, (5.11)
(zkyhy) (Gor) (zkzhz) GoT)

which converge to their continuous cases (5.8), respectively, as t, hy, h, tend to zeros. The numerical dispersion relations for
(4.11), (4.13) and (4.15) are the same as (5.10) and (5.11), respectively.

In what follows, we establish the convergence for the LOD-MS (4.10)-(4.15) using Taylor expansion. To this purpose and
for convenience, we omit the subscripts in case they are i +1, j+1, k+1

Letj=j+1, k=k+1in Egs. (4.10) and (4.11),i=i+1, k=k+ 1 in equations (4.12) and (4.13),i=i+1, j=j+1in
Egs. (4.14) and (4.15), and add them to (4.10)-(4.11), (4.12)-(4.13) and (4.14)-(4.15), respectively, it yields
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L(E, — Ey) — 3 [a/HE"! + o,H] =0 -

{ V(BN =) + 5 [o.Hyt + 0.H,] =0 >

L(Ey — Ey) + 5 [oxH; + 0:H}] = 0, s

V(B —Ey) — 5 [o.Hy + 0.Hy] =0, >
L(E: — E2) = 5 [0uHy + 0,Hy | = 0, »

{ L(ENT B o+ [oyHy + 0,H]] =0, >
L(Hy — Hy) + 5 [0, + 0,E;] =0, s

{ L(Hy' - Hy) - & 0.8, + 0.E,) =0, >

L(Hy — Hy) = 5 [0, + 0,E1) =0, .

L(Hy' = Hy) + 3 [0.B + 0.8, = (>10)

L(H; — Hy) + 35 0.6, + 0.y = 0, .

{ LM H:) — [, + 0,EL] = 0. >4

From (5.12)-(5.17), adding the first equation to the second one, respectively, it follows that the equivalent scheme for LOD-

MS (4.10)-(4.15)

% (E;‘“ EQ) - 2l€ ( HIE U4 6, H, — 8,HI — 5ZH;> =0, (5.18)

% (B -E)+ % (oxH; + ocHy — .y — 0.H,) =0, (5.19)

% (B - ) - % (oHy -+ 0:Hy — 0,y — 0,H}) =0, (5.20)

% (' —Hy) + % (6B +0,E; — 0B, — 6., ) =0, (5.21)

% (Hy' —H,) - 21—# (0E; + oE; — 0.E;*" — 6.E,) =0, (5.22)

% (Hn+1 H*) 21/1 (5XE; + 6B — 6,E; — 5y15§) =0. (5.23)

By Taylor’s expansion, it figures out that the truncation error for the equivalent scheme (5.18)-(5.23) at the point
xi+%7yj+%vzk+%’ t

g _1 |PE_ 3 (oH, oH,
n Nided 2| o2 2e \ otdy  otoz

1 (3h28H +h2<9H 3h28H 3h28H 3h28H —h28H>,

8ot | *ox2 v 0y? Z 0z2

+10 (hzozEX + K FEy +h2 02EX>

T 24e Xgyoxz Y oy3 2 9yoz> X 0z0x? Yoy2oz 7 073

. 1 |%E, 1 (@H, ,o°H.\| 10 (.0 .0, &
My, 1 Erlarz "2 (atax 35z || taae|ae Ty thaa

1 hza HZ 32 oH, L3 oH, hza 9Hy 352 O*H, h283Hx
2 8x3 yaxay2 Zox022 T *ozox: T Voydozr 7 oz )’

I 1 PE 1 aZHy OH,
G 27| Ot otox  Otdy

<
1(hzaH hzaH hz(‘)H 3h28H h283H 3hzaHx)

1 a0 EZ 28 E, ,0%E,
8 at (h X2 Iy oy y? +h 07> )

Toae (o T Maxayr TP axaz T ayae T oy P oxaz?
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2 25 A2p 2 2 277
o[ 3 (7R FEN] 10 (0 a0
ot 2u \ oty ooz 8 ot 0x Y 9y 0z

1 (3 , O°F, hza E, L3 PE, 352 P, 32 > Ey hza3Ey)

1

PETRTR )
1+7J—7.k—5 2

+ 24u Xayaxz y 8y3 Zoyoz2 T Xozox: T Yoy20z ¢ 0
PH 1 (PR PR 10 P 2 PHy 2 0H,
o2 2ul\otox ~otoz 8ot *oxz Y ay2 7 922

hza E  ap2 PE, L3R PE, 352 PE, 352 PEy hszEx
24u

. 1
Y T2

ipli 1,1
iadtykiy

8x3 Y E)xi)y2 Zox0z2 T *0zox®: T Voyozr 7 0z
Ty 2r  2F 24 T2 20
o|PH: 1(OF OE\| 10 (20H;  (20Hs | 20°Hy
ot u\otox  otdy 8ot “ox2 Y oy? 0z

e
1 (hzaE hzaE hzt)E 3h26E hzaE 3h28E")

epn _

1
Ggigut 2

-~ 24p |\ ¥ oxe Y O 8y2 Z X022 Xoyox: YV oy3 T 7 oxoz2

where the notations i, i, and i indicate that the function u(x,y,z,t) is calculated at somewhere of the mesh cell
i, Xic1] X [V, Yji1] X (26, Zka] x €7, €77].
By summarizing the above analysis, we get the conclusion:

Theorem 2. The truncation error of the LOD-MS is of first order in temporal direction and of second order in spatial direction. The
order in time is one order lower than the methods employed.

Next, we discuss the energy conservation property of the LOD-MS (4.10)-(4.15).

Theorem 3. Suppose that the initial values [E(x,y,z,0),H(x,y,z,0)]" are symmetric about the spatial variables x, y and z, and the
spatial domain under consideration is cubic or ball whose center is the origin, and the mesh step sizes are uniform, i.e., hy = h, = h,.

For any integer n > 0, set Ef; ), = <E” E, E}

X 1,0V 1,0 "2 1
1+7.J.k ity k 1.1.k+7

) and H;;, = <H,’} . . Hy H; > be the solution of the LOD-MS (4.2)-

)
Lk’ yi]+%.k ijkik

(4.4), the LOD-MS (4.10)-(4.15) conserve the discrete version of the energy conservation laws (2.8) and (2.9), that is,

n+1,2 n+1,2 ny 2 n2 02 0,2
ElE™ 1 + B = €l[E"F 4+ B = - = €%} + WO, (5.24)
. 12 N 12 . 2 . 2 s 1012 ¢ 14012
ENOE™ 1 + ullocH" 1 F = €llSE" [} + pl oM} = €6 + ull6cHY| (5.25)
where
1] K 2 2 2
E"|7 = hyhyh E; + E) +E
I H Y z; ; e Xidik Vijilk Zijkid ’
5 I ] K 2 2 2
n _ n n n
”H ”% - hxhyhz Z (Hxi+l'k> + (Hyi. +l.k> <H1 k+—> '
im1 j=1 k=1 2z 2 J
1 1
inlvi i @"2 3" — | e S L L
Proof. Multiplying both sides of (4.2)-(4.4) with Z,+ Lk ZI._H”(, Zu k) here Zl+ ik = {GE e ,uE " Hyi‘%w
1 T T
n+ T 2)"2 n+% n+l n+ n+ (3)"*2 o n+i n+d n+ n+ . S
u ZH]ZM} , Ziﬁ%k = {eEx Z,k,MEz zlk vzlk,u Z,qu} , Zi.j.k+% — |€E U;] UE, i], J;m“ v, i] , respectively, it yields
Table 1
Spatial accuracy with 7 = 0.01.
h llee Il Order; llee, Il Order lle, Il Order llen, [l Order
% 5.856E-3 - 9.312E-3 - 4.140E-3 - 6.585E-3 -
12T7:) 1.033E-3 2.50 2.326E-3 2.00 7.310E-4 2.50 1.644E-3 2.00
2% 1.826E—-4 2.50 5.813E-4 2.00 1.291E-4 2.50 4.110E-4 2.00

o
Bl

3.223E-5 2.50 1.451E—-4 2.00 2.279E-5 2.50 1.026E—4 2.00

N
=]
]
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1 1
N3¢ Mok
Y. X202k

i+%.j.k

_ n+1s N+
= —HyT SE

2 2 1 1
nde o o ontds
E; — E? =E, 12 6xHy..i s
i+%.j.k i+%.j.k i+5ik 1
2 2 1 1
N+5% o N+5%
H: —(mr —H)'T ST
idik ViiLik ik ik
2 2 1 1
% n gk o N4y
Exv. 1 - Exv. 1 =E 1 oyHZij!U
l.j+7.k x]+7.k I.j+7.k i
2 2 , 1
ﬂ H]—H,] _ H* _ Hn+§ 5 En+z*
2t ( Zijilk Zijilk Zijadie Y ik
2 2 1 1
g _(F — " s gt
Zijilk Zijilk iy ik
2 2 1 1
H; — (H! = —Hy'Z 6,E;?
XijLk Xijidk Kijela YT EK
2 2 1 1
1 n+l n+i
) - (E = —E7 5,HY?,
ik ik ikt 1
HH ? H 2 H"% S En+%
Vijked ( yij.k+%) B Vijed F XK
2 2 T T
n+1 o 4 N+y
E}’“ 1 - Ey el - Eyi-k l(SZHXi.j.k’
ijk 5 I._].k+7 k5
2 2 1 1
L(HM ) — (H =Hy? 6,E)?
2t ( Xijierd Xijiesd Kijad "F Vil

Summing all terms in the above equations over all spatial indices i, j, k, and adding them together, note that the assumption
and Green formula, the right hand side is offset. All U"-valued including terms on the left side are vanished. The remainder is
just the first energy conservation law (5.24).

To prove the second discrete energy conservation law (5.25), we introduce two notations: u"** is the intermediate value
u* at the (n + 1)th level, and s,u™# = ”"”%“" Acting the forward temporal difference quotient operator é; on each term of
(1)n+1x
i+jk

1 1 . . .
, szgﬁ?, (S,Z@"+2 on both sides, respectively, following
4L,

(4.2)-(4.4), then multiplying the resulting equalities with 6;Z kil
K
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Fig. 1. The profiles of E, and H,.
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the proof of the discrete conservation law (5.24), we get the second discrete energy conservation law (5.25). In the argument,
we have employed the commutability between temporal difference quotient operator and spatial ones. The proof is
finished. O

6. Numerical results

This section will provide numerical experiments to test the new derived LOD-MS (4.10)-(4.15). We will show some
numerical results for one-dimensional, two-dimensional and three-dimensional Maxwell’s equations with constant electric

permittivity and magnetic permeability. The main work focuses on the convergence and conservation laws, and stability as
well.

Suppose that u(x;,;, 2, t") and uf}, are the exact solution of the differential equations and the approximation of the LOD-
MS at node (x;,¥;, i, t"), respectively. As usual, we consider the numerical error in L., and L, norm, respectively, defined by

||ell||r>c = n;}]al}x |u(Xi7yj7Zl<7 tn) - u?j,l<‘7

1

3
lleull, = hxhyh; (Z(u(xi7yj7zlﬁ t") - u?j./)z) .

ijk

6.1. One-dimensional test problem

To check the numerical accuracy of central box scheme (3.20), we first consider a simple example of one-dimensional
transverse magnetic wave

OE, _ 1 0Hy
o € Ox°
OHy _ 1 9, (6'1)

ot noox?

by prescribing initial conditions
E.(x,0) =sin(x), H,(x,0) = —\/E sin(x),

and perfectly electric conducting boundary conditions. In this case, problem (6.1) has an exact solution

E,(x,t) = sin <x - \/%t) Hy(x,t) = —\/Esin (x - \/;t> (6.2)

In such a case, both energies I (2.8) and II (2.9) are kept exactly provided that the problem is simulated by the multisymplec-
tic central box scheme (3.20). We choose ¢ = € = 1. In the experiment, the problem is discretized on the spatial-temporal
domain [0,27] x [0,10] with time step size T = 0.01 and with different spatial step lengths. The numerical errors between

~13 -13
10 : : : : PRl : : : :
8r 1 351
7 - 4
3 - B
6 - 4
§ %2.5 F 1
o5 1 &
S c
3 5 2p 1
°o | 1l ©
54 5
] @ 15F E
3 - B
1 - 4
2 - B
1| | 05 1
0 . . . . 0 . . . .
0 2 4 6 8 10 0 2 4 6 8 10

Fig. 2. Error of energy I and II.
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Fig. 3. 20 Con of the 2-D TM wave at different times.

exact solution and numerical solution in L., and L, norms are enumerated in Table 1. The profiles of the electric component
E, and magnetic component H, are shown in Fig. 1. The errors of the conserved quantities (2.8) and (2.9) are pictured in
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Fig. 2. From the table and figures, we know that the central box scheme (3.20) is of second order convergence rate. It con-
serves the energies I and Il indeed.

6.2. Two-dimensional problem

In the following experiment, we concert the transverse magnetic (TM) polarization case inside a perfectly electric con-
ducting domain. The model reads

OHy _ _ 1 0E

o~ poy?

OHy __ 1 0

i (63)
O _ 1 (9Hy _ 9Hy

ot e\ ox ay )*

The spatial domain concerted is a rectangle [0,3] x [0,3]. The preset initial conditions are as follows:

E,(x,y,0) = sin(3nx) sin(4my),
Hy(x,y,0) = —0.8 cos(3mx) cos(4my), (6.4)
Hy(x,y,0) = —0.6 sin(37x) sin(4my).

The parameters are normalized to i = € = 1. For simplicity, we discuss perfectly electric conducting boundary conditions.
We apply LOD-MS (4.18) and (4.19) to solve the problem until ¢t = 10. The spatial-temporal domain is divided by step sizes

-13 -11

o%10 , , , , 4310 , , , ,
85 1 3.5¢ .
1.6} |
3. .
1.4} 1
= =25} .
512 1 8
[} [5)
s 4t 15 of .
o 5
S o0sf ]l &
508 i 1.5} ]
0.6} 1
1. .
0.4f 1
02k | 0.5} .
0 . . . . 0 . . . .

Fig. 4. Error of energy I and II.

LGumerical error

Fig. 5. Error between numerical solution and exact solution in L, norm.
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hy = 3%, hy =& and 7 = 0.01. The numerical results with 20 contours for all electric and magnetic components are de-
scribed in Fig. 3. The two conserved quantities (2.8) and (2.9) are presented in Fig. 4.

Looking at Figs. 3 and 4, it can be observed that the numerical solutions are consistent to the theoretical results of The-
orems 2 and 3. The contours are evenly distributed in the x-y plane for all components. The two conserved quantities are
preserved actually whose errors are within the roundoff error.

By the way, we had considered to simulate the TE problem (6.3) by the multisymplectic central box scheme (4.17) to
compare its efficiency with that of LOD-MS. However, we failed to code it because it need to solve a large scale of algebraic
system even if the mesh division is very coarse owning to the limitation of our PC.

6.3. Three-dimensional test

To verified the correctness of the LOD-MS for 3-D Maxwell’s equations, we choose the following exactly periodic solution
of Maxwell’s equations (2.1) and (2.2) over the unit cube with u=¢€=1:

E, = COs (2n(x+y+z) —2\/§nt>7 Hy = V3E,,
E,= —2E, H,=0, (6.5)
E,=E,, H,=-V3E.

From the expression and the cubic spatial domain, we can conclude that Theorem 3 is correct provided that the spatial steps
hy = hy, = h,. The expression (6.5) of the solution implies that the waves propagate along the main diagonal of the compu-
tational domain.
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Our numerical schemes (4.10)-(4.15) approximate the exact solution (6.5) over the spatial-temporal domain

[0,1)% x [0,2]. For the spatial step size, we use h, = , = h, =&, and for the temporal step length, we use 7 = g/ Figs. 5
and 6 show the numerical errors between numerical solution and exact solution in the sense of averaged and maximum
norm, respectively, for all components. And Figs. 7-9 provide the residuals of energy I and II with different temporal step
sizes T = ;25, T = g&g and 1k Tespectively. From these figures, we can observed that the numerical solution approximates
the exact solution very well. Both energy I and energy Il are exactly preserved within the machine precision. As the temporal
mesh refined, the residuals of energy grow. The reason mostly lies in the refinement of mesh leading to the increment of
computational cost. Thus, the roundoff error is enhanced. Moreover, the residual for the second energy is two orders of mag-
nitude larger than that of the first one, which is caused by the division of 7 at every time level in the second energy
expression.

7. Conclusions and remarks

We have developed a new type of approach to devise multisymplectic integrators for multi-dimensional HPDEs which
have not discovered in the existing literatures. The technique is successfully applied to 1-D, 2-D and 3-D Maxwell’s
equations. We split the original multisymplectic HPDEs into several LOD HPDEs. The LOD multisymplectic HPDEs are
discretized by a pair of SRK methods which lead to directional multisymplecticity, separately, and one is employed as
the initial values of the next one. The directional multisymplectic conservation laws are all satisfied when they are applied
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to Maxwell’s equations. Moreover, it is paid for the total symplecticity is preserved indeed. By theoretical and numerical
analysis, the LOD-MS maintains the quadratic energy exactly in some cases. However, the convergence rate of the
LOD-MS is generally lower than that of the original methods employed in temporal direction, which is paid for the
superiors.

The boundary conditions we consider in the paper are perfectly electric conductor, namely, homogeneous boundary
conditions. In fact, the LOD-MS method can be generalized to other boundary conditions, such as periodic boundary con-
dition. However, it is difficult using it to discontinuous boundary condition. We will discuss its application to problems
with source term and unbounded domain which will be combined with artificial boundary methods [33]. We will inves-
tigate other kind of multisymplectic integrators to design LOD-MS for multi-dimensional HPDEs, such as Runge-Kutta—
Nystrom method, partitioned Runge-Kutta method, etc., and their conservation property. Certainly, it is also very impor-
tant to widen the application to other context, such as, multi-dimensional Schrédinger equation, Klein-Gordon-Schréding-
er equations, etc.
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